Introducing the Engine Combustion Network

Lyle M. Pickett

Sandia National Laboratories

Sponsor: DOE Office of Vehicle Technologies Program Manager: Gurpreet Singh

Engine Combustion Network

Collaborative modeling/experimental website started.

http://www.ca.sandia.gov/ECN

Engine Combustion Network

ECN Home

Experimental Data

Constant-Volume

Diesel Combustion

Data Search

2 Combustion

1 Experimental

Constant-Volume Diesel Combustion

A wide range of ambient (charge-gas) environments can be simulated at the time of fuel injection in this facility, allowing the effect of each variable to be assessed. With full optical access, the following ambient conditions can be generated:

- Ambient gas temperatures from 450 K to 1300 K
- Ambient gas densities from 3 to 60 kg/m³
- Ambient gas oxygen concentrations from 0% to 21%

These conditions span or exceed those typically experienced in a diesel engine.

Fuel is injected using common-rail fuel injectors with the following parameter range:

- · Injection pressures above ambient from 40 to 200 MPa
- Nozzle sizes from 0.05 to 0.5 mm
- #2 diesel, single-component reference (n-heptane, cetane), and oxygenated fuels

The data obtained in this facility is useful for model development and validation because of the well-defined boundary conditions and the wide range of conditions employed. (Go to experimental data search).

Links at the left describe the methods for generating these conditions, the diagnostics applied, and the archival data acquired in the facility.

Vessel Geometry 3 Ambient Conditions 4 Thermal & Velocity Distribution 5 Injector Characterization 6 Fuels 7 Definitions 8 Experimental Diagnostics 8.1 Soot 8.2 Jet Penetration 8.3 Liquid Penetration Length 8.4 Lift-Off Length 8.5 Ignition Delay 8.6 High-Speed Movies & Flow Visualization

Accurate models require accurate boundary conditions.

Vessel and ambient gases

- Temperature spatial distribution and fluctuation
- Pressure/density
- Ambient gas composition (N_2 , O_2 , CO_2 , H_2O , minor species)
- Velocity/turbulence
- Geometry

Accurate models require accurate boundary conditions.

Vessel and ambient gases

- Temperature distribution and fluctuation
- Pressure/density
- Ambient gas composition $(N_2, O_2, CO_2, H_2O, minor species)$
- Velocity/turbulence
- Geometry

Injector and Nozzle BCs

- Injection pressure
- Geometry and flow coefficients
 - Discharge and area contraction
 - K factor, hydro-erosion
 - Molds/x-ray tomography of internal geometry
- Rate of injection
- Temperature
 - Affects fuel density, viscosity, and ROI, $\Delta \tau_{ini}$.
- Fuel
 - Preference to defined surrogate fuels.

Data available on the website

Easy to find data with search utility

Temperature Variation

DATA SEARCHING UTILITY

Simply click on values to narrow selection or choose select conditions below.

Results will be displayed after query yields less than 200 records.

* Baseline Condition Diesel * Baseline Condition n-heptane * Soot vs Inj Press * Soot vs Ambient O <u>ients</u>

reset search *	 Soot vs Orifice 	<u>Diameter * All</u>	Soot Measurem
----------------	-------------------------------------	-----------------------	---------------

Experimental Type	Ambient O ₂ [%]	Ambient T [K]	Amb Dens [kg/m3]	Inj Press [MPa]
ALL	ALL	ALL	ALL	ALL
Soot	21	800	14.8	138
Lift-Off Length		850		
Ignition Delay		900		
Jet Penetration		950		
Liquid Length		1000		
High Speed Movie		1100		
		1200		
		1300		

Expand results table to show more data columns Click here for the Column header definitions

Tabular data may be copied and pasted into delimited text or Excel file

<u>0</u> 2 [%]	<u>T</u> <u>a</u> [K]	ρ <u>a</u> [kg/ <u>m³]</u>	<u>d</u> [mm]	<u>Inj</u> <u>P</u> [MPa]	<u>Fuel</u> Type	<u>Fuel</u> <u>T_{fl}</u> [K]	Liquid Length [mm]	<u>Lift-Off</u> Length [mm]	<u>lgn</u> Dly [ms]	Pres <u>Ris</u> [MPa
21	800	14.8	0.180	138	D2	436	0	65.2	2.12	none
21	850	14.8	0.180	138	D2	436	0	41	1.24	none
21	900	14.8	0.180	138	D2	436	0	31.2	0.88	none
21	950	14.8	0.180	138	D2	436	0	24.7	0.69	none
21	1000	14.8	0.180	138	D2	436	0	21.8	0.56	none
21	1100	14.8	0.180	138	D2	436	0	15.9	0.38	none
21	200	14.8	0.180	138	D2	436	0	12.5	0.29	none
21	1300	14.8	0.180	138	D2	436	0	9.2	0.23	none
	∇									

•EGR Variation (Baseline n-heptane)

DATA SEARCHING UTILITY Simply click on values to narrow selection or choose select conditions below. Results will be displayed after query yields less than 200 records. * Baseline Condition Diesel * Baseline Condition n-heptane * Soot vs Inj Press * Soot vs Ambient O2 reset search * Soot vs Orifice Diameter * All Soot Measurements

Ambient O₂ Ambient T Amb Dens Inj Press Noz Diam Fuel T_{Fuel} Experimental Type [MPa] [K] [kg/m3] [mm] Туре [K] [%] ALL ALL ALL ALL ALL ALL ALL ALL 14.8 150 1000 0.100 NHPT 373 Soot 0 21 Lift-Off Length Ignition Delay 15 12 Jet Penetration 10 Liquid Length High Speed Movie 8

Expand results table to show more data columns

 $\mathbf{\nabla}$

Click here for the Column header definitions

Taxular data may be copied and pasted into delimited text or Excel file

<u>0</u> 2 [%]	<u>T</u> <u>a</u> [K]	ይ <u>a</u> [kg/ <u>m³]</u>	<u>d</u> [mm]	<u>Inj</u> <u>P</u> [MPa]	<u>Fuel</u> Type	Fuel <u>T_{fl}</u> [K]	<u>Liquid</u> Length [mm]	<u>Lift-Off</u> <u>Length</u> [mm]	<u>lgn</u> Dly [ms]	<u>Press</u> <u>Rise</u> [MPa]	Soot f _V [ppm] [mm] [mm]	<u>Movies</u>	<u>Jet</u> Penetrate
0	1000	14.8	0.100	150	NHPT	373	9.2	0	0	none	none	<u>Shadow</u>	PenvsTime
21	1000	14.8	0.100	150	NHPT	373	0	17	0.53	<u>PvsT</u>	img <u>f_v x y</u>	<u>Soot;</u> <u>Chemi.</u>	none
15	1000	14.8	0.100	150	NHPT	373	0	23.4	0.73	<u>PvsT</u>	img f _y x y	<u>Soot;</u> <u>Chemi.</u>	none
12	1000	14.8	0.100	150	NHPT	373	0	29.2	0.95	<u>PvsT</u>	img f _y x y	<u>Soot;</u> <u>Chemi.</u>	none
10	1000	14.8	0.100	150	NHPT	373	0	35.1	1.13	<u>PvsT</u>	img f _y x y	<u>Soot;</u> <u>Chemi.</u>	none
8	1000	14.8	0.100	150	NHPT	373	0	42.3	1.52	<u>PvsT</u>	img f _y x y	<u>Chemi.</u>	none

Modeling of "baseline n-heptane condition" by multiple groups.

Four papers at this year's SAE Congress

Paper	Authors	Code/Emphasis
SAE 2008-01-1331	Vishwanathan, Reitz	KIVA-CHEMKIN
Thurs. 9:00 AM	University of Wisconsin	Lift-off and Soot
SAE 2008-01-0968	Campbell, Hardy, Gosman	STAR-CD
Mon. 1:30 PM	Imperial College	ECFM3Z
SAE 2008-01-0961	Karrholm, Tao, Nordin	OpenFOAM+KIVA
Mon. 11:00 AM	<i>Chalmers University</i>	Lift-off and Ignition
SAE 2008-01-0954	D'Errico, Ettorre, Lucchini	OpenFOAM
Mon. 10:00 AM	<i>Politecnico di Milano</i>	Eddy Dis. + PSR

 Above authors have been kind enough to share detailed modeling results for comparison to ECN data.

- Compiled in this presentation.

Future of the ECN

Other experimental results added to the website.

- Will include data from various facilities, including engines.
- All facilities must adequately define boundary conditions.
- Please approach us if you would like to participate.
- Improving accuracy of experimental techniques and quantifying uncertainties.
 - Detailed velocity (turbulence) distribution
 - In chambers
 - In non-reacting, vaporizing fuel jets
 - In reacting jets
 - Rate of injection compared using several techniques.
 - Experimental datasets repeated in other facilities.

Forum for model comparison

Model results also posted to the website.

Future of the ECN

- Identification of a few key working conditions recommended for future experimental and modeling efforts.
- Suggested ambient conditions (LTC)
 - Ambient temperature 900 K
 - Ambient pressure 60 bar (ambient density 22.8 kg/m³)
 - Ambient oxygen concentration 15% O₂ (High EGR)

Injector conditions to be defined.

- Participants will work with the same injector nozzle, nozzle shape, injection duration, fuel, fuel temperature and so forth.
- Injectors to be shared amongst ECN participants.